Page Nav

HIDE

Breaking News:

latest

🧠 Installing DeepSeek-R1:8B with Ollama & Open WebUI on Windows

 🚀 Overview In this guide, you'll learn how to install and configure DeepSeek-R1:8B using Ollama on a Windows machine. We'll als...

 🚀 Overview

In this guide, you'll learn how to install and configure DeepSeek-R1:8B using Ollama on a Windows machine. We'll also show you how to set up Open WebUI to interact with your models via a user-friendly interface.


But wait—there's more! If you're looking for automated ways to manage AI models or want to extend this setup, we’ve got two powerful tools for you:

  • ModelCraft: Automate model setup and management effortlessly. GitHub Link
  • LazyLLMs: Monitor and manage AI models with a Terminal UI. GitHub Link

🛠️ Prerequisites

  • Windows 10/11
  • Docker Desktop installed and running.
  • Administrator privileges to run installation scripts.

⚙️ Step 1: Install Ollama


1️⃣ Download the Ollama installer:

Invoke-WebRequest -Uri "https://ollama.com/download/OllamaSetup.exe" -OutFile "$env:TEMP\OllamaSetup.exe"

2️⃣ Run the installer silently:

Start-Process -FilePath "$env:TEMP\OllamaSetup.exe" -ArgumentList "/silent" -Wait

3️⃣ Verify the installation:

& "C:\Program Files\Ollama\ollama.exe" --version

🐳 Step 2: Set Up Open WebUI

1️⃣ Ensure Docker is running.

2️⃣ Pull the Open WebUI Docker image:

docker pull ghcr.io/open-webui/open-webui:main

3️⃣ Run the container:

docker run -d -p 8080:8080 --name open-webui -v open-webui:/app/backend/data ghcr.io/open-webui/open-webui:main

4️⃣ Access the Web UI at http://localhost:8080.


📥 Step 3: Pull DeepSeek-R1:8B Model

Use Ollama to pull the DeepSeek-R1:8B model:

& "C:\Program Files\Ollama\ollama.exe" pull DeepSeek-R1:8B

To pull additional models like qwen2.5:7b:

& "C:\Program Files\Ollama\ollama.exe" pull qwen2.5:7b

🤖 Automate with ModelCraft


Why do all the manual work when ModelCraft can handle it for you?

⚙️ Automatic Installation & Configuration

ModelCraft simplifies the setup process with a single script:

1️⃣ Clone the ModelCraft repository:

git clone https://github.com/iscloudready/ModelCraft.git
cd ModelCraft

2️⃣ Run the PowerShell automation script:

.\lazyllms_auto_install.ps1

This script will:

  • Install Ollama (if not already installed).
  • Pull models like DeepSeek-R1:8B and qwen2.5:7b.
  • Set up Open WebUI via Docker.

📊 Monitor Models with LazyLLMs



Once you've set up your models, you can manage and monitor them using LazyLLMs. This terminal UI tool provides real-time insights into model performance and system resource usage.

1️⃣ Clone the LazyLLMs repository:

git clone https://github.com/iscloudready/lazyllms.git
cd lazyllms

2️⃣ Launch the terminal UI:

python main.py tui

Key Features:

  • 📊 Real-time monitoring of running models.
  • 🚀 System resource tracking (CPU, RAM, GPU).
  • 🔍 Start and stop models directly from the terminal.

🎉 Conclusion

You’ve successfully installed DeepSeek-R1:8B and set up a powerful Web UI for easy interaction. For advanced model management, explore ModelCraft for automation and LazyLLMs for real-time monitoring.

Happy experimenting with AI models! 🚀

ليست هناك تعليقات